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THE SPATIAL PROBLEM OF THE COMPRESSION OF A MATERIAL ALONG A 
PERIODIC SYSTEM OF PARALLEL CIRCULAR CRACKS* 

V.M. NAZAPENKO 

The non-axisymmetric problem of the biaxial uniform compression of a 
material along a periodic system of parallel circular cracks is considered. 
A facture criterion is used /l, 2/ within the framework of linearized 
stability theory according to which the beginning of fracture of the 
material under compression along the cracks is characterized by local 
buckling near the cracks. Within the framework of this approach, axi- 
symmetric and plane problems were considered earlier for differentmaterial 
models (highly-elastic, composite and plastic) for one or two internal 
cracks, near-surface cracks and a periodic system of cracks /l-13/**. 
(**See also: Nazarenko, V.M., The axisymmetric problem of the fracture 
mechanics of materials under compression along a periodic system of 
parallel cracks (unequal roots). 

Proceeding of the Eleventh Scientic Conf. of Young Scientists. Inst. 
Mechanics, Ukraine Academy of Sciences, Kiev, 1986. 154-161, Dep. VINITI 
5507-86, July 28, 1986 Nazarenko, V.M. and Starodubtsev, I.P., On material 
fracture under compression along two parallel cracks in the case of plane 
strain. Non-classical and Mixed Problems of the Mechanics of a Deformable 
Body: Materials of a Seminar of Young Scientists, Kiev, 1985, 142-145, 
Dep. 5531-85 in VINITI, July 29, 1985.1 The investigation is performed 
in general form for an arbitrary kind ofelasticpotentialforcompressible 
andincompressiblematerials,thetheoryoflargeandmodification~ofsmallsub- 
critical strains, and can be extended to other models of a deformable 
body (composites, plastic bodies, etc.). 

1. Formulation of the problem. Fracture of a material weakened by a peripdic 
system of parallel disc-shaped coaxial cracks {r<a,0<0<h,t, = 2hn, n = O.&i,&-&. ..)under 
biaxial compression in planes parallel to the cracks is considered. Lagrange coordinates 

=I (I = I‘& 3) are utilized that are identical with the Cartesian coordinatesintheundeformed 
state, as are the symmetric stress tensor St referred to unit area of the body in the 
undeformed state, u, t is the perturbation of the displacement vector and the non-symmetric 
Kirchhoff stress tensor, respectively, and r, 8. za are the cylindrical coordinates obtainable 
from the Cartesian coordinates z,(j = 1,2,3). 

*Prifil.Matem.Mel;han.,52,1,145-152,1988 
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The realizable homogeneous subcritical state is given by the relationships /l/ 

S,," = 0, sun = S,,O # 0, S,,O = const 

UI ' = 6,, (A, - l).r,; hj = const; i, = A2 # li, 

(Aj are the elongations along the axes 1, < I). The crack edges are stress-free. 
boundary conditions of the linearized problem have the form 

(1.1) 

The 

t,, = I.qr = i,e = O(ra = (urn),, r< a, 0 < 8 < 2n) 0.2) 
n - 0, +I, *2, . * ., 

where the plus and minus subscripts denote the appropriate crack edges. 
In view of the periodicity of the geometric and force schemes of the problem, also con- 

sidering the symmetric and antisymmetric stress and displacement fields relative to thisplane 
separately (because of the linearity of the problem and its symmetry relative to the plane 

5) = 0) t we can reduce the initial problem to a problem for the layer O,<s,<k separately 
for the symmetric and bending buckling modes with the following boundary conditions o.<e< 
2n everywhere): 

The symmetric mode 

us = 0 (28 = 0, r > a), t,, = 0 (2* = 0, r < a) 

t_q, = t& = 0 (2* = 0, 0 < r < =) 

UQ = 0, t .qr =t&=o((z,=h,O,<r<~) 

The bending mode 

u, = ILL, = 0 (zs = 0, r > a) 

t,, = t,fJ = 0 (Z$ = 0, r < a) 

t,, = 0 (23 = 0, 0 < r < c-) 

ur = zL8 = 0, t,a = 0 (zs = h, O<r<m) 

(1.3) 

(1.4) 

Investigation of problems (1.3) and (1.4) relies upon the apparatus of the theory of 
cracks for bodieswithinitial stresses /l/. 

Representations of the general solutions of the linearized problem for the initialstates 

(1.1) in terms of potential functions in a circular cylindrical coordinate system are given 

by the relationships /l, 6/ (limitedtothe case of equal roots n,'= n,' of the character- 
istic equation, the terminology and notation in /l, 6/) 

(1.5) 

t,,: cd; [ (d,l,” - d,l,=J $- - d,l,"g - d,l,"z, $$] 

tJH = COIO {(Q-‘In +- -&- [(d, - d,) F - d,U’l - 

(nlo)-“; d,z, f g + @,=I-“1 d, $$- I , 
t,, = c,*O { (n,‘y + [(d, - 4) F - W’l- 

d’F 
(nlo)-‘l*d z - ’ 1 drdr, - (n,‘)-‘/~ d, + -$&} 

The potential functions cp (r, 0, 2,). @ (r, 6, z,), F (r, 8. z,), 'ps (r, 0, za) are harmonic functions of 
their arguments and 

a) SE &J/az,; z1 = (nl")-'&a, i = 1, 31 (1.6) 

The quantities n,", nsor mjo, Z,‘, d, (j = 1, 2) in the representations (1.5) are determined 
by selecting the elastic potential '(with hppropriate simplifications for modifications of the 
theory of small subcritical strains) or in the general case by the selection of the deformable 
body model /l/. We proceed as is customary in classical elasticity theory when investigating 
non-axisymmetric problems /14-16/; we represent the harmonic potential functions in the form 
of series in the harmonics of argument 8 with coefficients in the form of Hankel integral 

expansions in the coordinate r of order corresponding to the number of the harmonic (here and 



115 

henceforth summation is over n from 0 to w) 

cp (r, 0,~~) = - 2 cos a0 5 fB$)(h) sh a (rn, - z*) + 

82) (k) ch h (h, - %)I J~O(~) k* 

F(r,%z,)=z cos n0 3 [A:’ (A) ch h, (h, - zI) + 
0 

dl 
A:’ (h) sh h (h, - z& J, (kr) - 

ah Lb1 

cpps (r, 0, zs) = z sin ne 5 [d,” (A) ch h (ha - z,,) + 

C’,“’ (h) sh h (h, - 63)l “J. (J4 &- 

(f&, = (rzjywz, j = 1, 3) 

41.7) 

where A,,@, B,@), t&(j) are unknown functions. The representation for the function * (r, 8, srf 
follows from (1.6) 

2. System of dual integral equations. We will investigate problems (1.3) and 
(1.4) for the symmetric and bending buckling modes by first reducing them to dual integral 
equations for each harmonic, and then to Fredholm integral equations of the second kind. In 
view of the awkwardness of the calculations, we will represent the investigation procedure by 
the example of problem (1.4) for the bending mode. 

Satisfying the boundary conditions given in the whole plane 5a = con& (or It = con&, 
i = 1,s) - the last two rows in (1.4), we obtain four equations connecting the functions 
A$d, 3,,m’t c$n, .j = I, 2. Utilizing the relationship 

J,.'(z)= - J,+~(z) f VP’J,(z) .(2.1) 

and equating the expressions for sin& and cos me to zero, we obtain that the equations 
mentioned are satisfied identically if 

The remaining boundary conditions in (1.4) (the first two rows) result in a system of 
dual equations (taking into account (1.51, (1.7) and (2.2)) 

G Cp)J, (hr)] dh = 0, r > a 

01 

I: sin n0 
SL 

- + (Bc’ + &’ cth hh,) J,, (hr) + 

two (ir) 
c’,l) n athrj db=O, r>a I 

Z cos n0 5 [ (nl@)+ [(dl - d,) A$’ cih wil - 

d, (B; cth M, + B”)] $$$ + 

(rtr”)-‘j* d * Xr ~C$?cth&J,(hr)\hdh=O, r<a 

w 

ZsinnB 
S( 

- (nl~-'/+- [(dl - d,) A:‘cthU, - 

d, (Btp, cth & -p I$?)] J n (hr) - 

(n8~-” d,C: cth hlr 
r&) 

a a(b) 1 
hdli=O, r<a 

(2.3) 

We note that on selecting the general solutions in the form of (1.5) when the potential 
functions are chosen in the form (1.7) of a sum of trigonometric functions multiplied by the 
Hankel integral expansions, the components u,, us, tar, h taking the relationships (2.11 and 
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2vz“J,(z)= Jr_1 (z) -j- J,_, (z) 

rnto account can be represented in general form (analogous to the representation /li/ rn the 
classical case) as 

u, = Z Cos n6l (K,,,, - I+,), us :-. X sin Al (K,,, + Ln_r) 

t,,=- clcoZ cm nO(C',,+1 - I',-,), lyg -- cIIOX sin nO(Un+r + V,,_r) 

Here X,+1, Cm+, are Hankel integral transforms of order (n + I), and L,_,, V,_, are 
of order (n-i). Consequently, two conditions of the type u, = 0, us = 0 (or tJr = 0, t,fl = 0) 
for z1 = const can be reformulated to the form K,+, = O,L,_, = 0 (or U,,, = 0, V,_, = 0) for 
zt = const by equating the coefficients of sin-A and cos ne to zero. 

Taking account of the above, we conclude that the dual Eqs.(2.3) decompose into separate 
equations corresponding to each n-th harmonic in the variable 0 

0 
X*J,,,(?x)dl- 0, r>a; X*--(I-$$:'-&' 

((n,“)-“1 d,A$:‘[- k cth p1 + ~'1(ct112~L1 - I)] _r: 

(ns")-"1 d,C:’ cth ps) Jnfl (hr) h dh =.: 0, r < a 

= 1, 2, . . .; p,=M,, j=l,3; k= (l,‘=- 

c”) ds (dAT’ 

(2.5) 

The case of the axisymmetric problem (n =O) for the system of dual equations (2.4) and 
(2.5) is singular since in this case only equations with the upper signs should be retained 
in the system by setting C,fl) =0 therein, since sin& ~0 for n =O, see (2.3). The result 
also follows directly from system (2.4) and (2.5) for II = 0 if it is taken into account that 

J-, (z) = -J, (2). The axisymmetric case is discussed in detail earlier /13/ and, consequently, 
we willnotdiscuss it further. 

3. Solution of the system of dual equations. Obtaining Fredholm integral 
equations. One of the methods of solving dual integral equations is the method of sub- 
stitution which is thus case consists of the fact that X* are selected in a form such that 
relationships (2.4) are satisfied identically. The two remaining relationships (2.5) are 
usually converted to Abel integral equations by special methods (the method is demonstrated 
in /15/ for non-axisymmetric problems) or into Schloemilch integral equations (see /17/, where 
dual equations are considered for Bessel functions of identical order), whose solutions also 
yield the desired Fredholm equations of the second kind. 

The method described in /17/, based on obtaining the Schloemilch equation modernized to 
the case of the dual equations (2.4) and (2.5) in which Bessel functions of the different 
orders ((n+ 1) and (n- 1)) occur, will be used below. 

We will represent the solution of the system of dual integral equations under consider- 
ation in the form (% 0) are unknown functions) 

x,i;(S).“v~‘/I~tl/~*(t),~f,,,(It)dt 
0 

(3.1) 

We later need the relationship /lB/ 

t=Fv-& [t*vJv(Et)l=f EJvw(&f) (3.2) 

which is a special case of the discontinuous Webber-Shafheitlin integral 
integral 

s 
I 

09 O<z<sr 
A"8 J, (AZ) J,.A/, (Sy) dk = 

0 

and the Sonine 

(3.3) 

(3.4) 

Selection of the solution in the form (3.1) enables relationships (2.4) to be satisfied 
by taking account of (3.2) and (3.3) and integrating by parts. We express Aafl), and C,(') 
in terms of X*. Substitution into (2.5) yields the equation 
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(3.5) 

We convert (3.5) first to Schloemilch integral equations and then to Fredholm integral 
equations of the second kind. We will demonstrate the procedure mentioned in an example of 
(3.5) with the upper signs. 

Using (3.2) and integxation by parts, we represent 

and using (3.3) and (3.61 we obtain 
m 

I* = s d r 
X.&J,,+l (b) dh = - r” dr r-an s g-k. (t) 

dt 

0 0 
($4 - tap 

(3.6) 

(3.7) 

9+ (4 = -g vcp, (t)l. 4L @I = t%-(t) 

Jh = f’ L* (A) X&J,m (hr) da, L* fV = 

~&UP,. JCdlTq~(~d 
Eq.(3.5) with the upper signs which has the form in the notation (3.71 

(-ks-&I++ (-ks+q)~_+ J++ J_=O 

will take the following form after multiplication by fn, integration with respect to r 
between 0 and r and multiplication by.r*: 

(34 

and substuting t=rsinf3 we obtain from (3.8) 

(FCS+~)~ +#+(rsinB)dk?+(ks-q) S g_(rainB)dtl=N(r) f 

¶&+a 

0 0 

W-3 

The Schloemilch equation 

=pl 

i f(reinf3)diJ=N(r) (O;Fsr<a) 
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has the solution 

f(z)==~[N(O)+z s N'(tsinQdB] 
0 

In the case under consideration 

j (z) = (ks + qjap, (z) + (k - ML (4 N (0) = 0 

nla s N'(zsin 0)d0 = f (L+(k) X, + L(k) X-) X 
0 0 

(using the Sonine integral (3.4)). Taking account of the relationship /19/ 

and using the representation for X, in the form (3.6) and X_ in the form (3.11, we obtain 
the desired Fredholm equation of the second kind 

with the kernels 

(ks + q)Ip+(z) + (J= - q)$P-(2) +; {9+(+%&r@. t)dt + 
0 

2 a 
7 $_(t)M,,(2,f)dt-00, O,<z<a. n=i,2,3,... 

s 0 

M,, (z, t) == nt 1 L, (A) (-g)“’ [t-“+‘/‘Jn_l,* (At) - a-“+‘l*Jn_,,, (Aa)] x 

2. 

N 1 
n p:, 

-2_r(ntllr)- 
p%-‘It - ( “2 ) “J,_t,, (AZ)] dl, 

M,, (41) = nxt-wl 5 L_ (A) (+)‘” Jn_*,, (At) [ (+)“T zan-1 - (n + w 

z”-“9 (+)‘” J,,_t,, ;?t.z)] dl 

In exactly the same way, we obtain the second Fredholm equation 

(ks -Q)$+(z) + (ks +q)cp_(+) + 4 ~o+V)M.~(~, t)dt + 
0 

~~lp_(~)&&,r)df=0. O,<s<a, n= 1,2,3,. . . 
0 

with the kernels 

M,, (z, t) = + &‘+‘I* 1 L_ (A) A [a-“+“-J,_*,, (Au) - 

t-n+‘l~Jn’,, (At)1 JZ,, (A.%) d). 

M, (2, t) = - $ z”+W-“+‘~~ j L, (A) AJ,,+. (At) J,,_a,, (AZ) dA 
0 

from (3.5) with the lower signs. 
Writing the half-sum and the half-difference of (3.10) and (3.12), we obtain 

resolving system of integral equations in the form 

rp, (2) + Cp-(2) + + j q+(t) K,, (2, t)dt + 4 j 9-0) K,,(G t) dt=O 
0 0 

'P+(r) - 'L(r) + + &#+(~)K,,(I' t)dt ++ f cP_(t)&, (r, Q&=0 
0 0 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

the 

(3.14) 
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Investigation of problem (1.3) for the symmetric mode results /17/ in the equation 

cp(r)K(t,t)dt=O, O<z<a, n=i,2,3... 
” 

(3.15) 

K (z, t) = + tW’/~ 1 kg (A) Jn+l,, (At) J,,+I,, (lit) dh 

g (M = --I (~3 -” k-'J (PI) 

Therefore, the initial problems (1.3 and (1.4) are reduced, respectively, to the set of 
eigenvalue problems (3.15) and (3.14) for the shortening parameter &< 1 for each n-th 
harmonic (n = I, 2,. . .). The kernels K,,(z, t) (i, j = i,2) and K(z,t) of the integral equations 
obtained are cotinuous everywhere except atthepoints satisfying the conditions k (&)q (A,) = 0 
and k (A.,) = 0. The first determines the value J-i+<& corresponding to a surface insta- 
bility of the half-space /20/, and the second to the value Al*= <he, corresponding to the 
surface instability of the half-space on the basis of a consideration of just the axisymmetric 
linearized problem. 

The critical values L, obtained when investigating the eigenvalue problems according to 
the fracture criterion used correspond to the beuinnina of the fracture of a material weakened 
by a periodic system of parallel cracks under compression along the latter. 
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ASYMPTOTIC SOLUTIONS OF INTEGRAL EQUATIONS OF CRACK THEORY PROBLEMS 
FOR THIN PLATES* 

V.B. ZELENTSOV 

Integral equations to which problems of the bending of thin plates with 
slits can be reduced are considered. On the basis of the properties of 
the integral equation kernels, conclusions are drawn concerning the 
classes of existence and uniqueness of their solutions. Asymptotic 
methods based on extraction of their principal part with subsequent exact 
inversion are proposed for the solution of the integral equations. On 
the basis of the solutions obtained, formulas are presented forthe stress 
intensity factors in the slit angles, and their dependence on the qeo- 
metrical parameters of the problem is shown. Other problemsareindicated 
that result in the solution of the integral equations under consideration. 

Asymptotic methods of solving integral problems of elasticity theory 
problems on cracks /l-3/ were considered earlier, as were also integral 
equations /4/ analogoustothose considered below. 

1. Tine integral. equation. Two kinds of problems (A and B) of crack theory for 
Kirchhoff-Love plates are studied. 

Problem A, A Kirchhoff-Love plate in the form of a strip of width 2h(O&y<%) is 
considered which is stiffly clamped along the edges. There is a rectilinear slit (crack) of 
length 2a on the plate axis of symmetry (Y = 4 . The slit (crack) edges are subjected to 
the action of a bending moment M,=cp,(x). It is required to determine the angle of rotation 
of the slit edge gio (2) (Fig.la) . 

Problem B. As in problem A, a plate in the form of a strip with a slit (crack) is con- 
sidered. The slit (crack) is opened under the action of an antisymmetric transverse force 

v, = cpz (x) distributed along the slit edges. Determine the vertical displacement of the 
slit (crack) edges gz* (2) (Fig.lbl . 

The mathematical formulation of the problems under consideration is as follows: find the 
solution of the boundary value problem for the biharmonic equation 

DA% = q (2, y) (i.i) 

@ (2. Y) is the plate deflection, q(x, y) is the distributed load, and D is the cylindrical 
stiffness) with mixed boundary conditions. 

Problem A. 

20 (.?&O) = W”’ (2, 0) = V” (z, h) = 0, 1 z 1 < 00 
M, (~3 h) = ‘~1 (4, 1 x I c a; wy’ (2, h) = 0, a < 1 z 1 < 00 

U.2) 

*Prikl.Matem.Mekhan.,52,1,153-159,1988 


